| = = =

> Introduction

Cryptographic primitives' mathematical object has been proved that is secure enough! Does this security level implies also in concrete hardware implementations?

✓ Every hardware implementation of ciphers has additional information leakage (exec. time, consumption, radiation, heat etc), which may lead the attacker to reveal secret parameters of the algorithm.

✓ Reconfigurable hardware (FPGAs) is ideal for evaluation

> SASEBO – FPGA Devices

SASEBO – G

Sasebo-R Detail View

SASEBO – B

Sasebo-R (Component View)

Sasebo-R I/O Signals

Top View (excl. power lines)

Sasebo-R Block Diagram

Register Array Allocation

Side Channel Attacks Cryptanalysis Against Block Ciphers Based on FPGA Devices

*Anestis Bechtsoudis , **Nicolas Sklavos

* Computer Engineering and Informatics Department, University of Patras, HELLAS, e-mail : mpechtsoud@ceid.upatras.gr ** Informatics & MM Dept., Technological Educational Institute of Patras, HELLAS, e-mail : nsklavos@ieee.org

Ciphers Implemented in LSI

Public-Key Cryptographic Algorithms Interface Circuit (RSA, ECC)

• LSI Main Functionalities:

- \checkmark Computes the cryptographic algorithms.
- ✓ Interfaces with control FPGA on SASEBO-R
- Generates a trigger signal for sampling information such as power consumption.
- ✓ Some other special operations for specific AES implementations

Examined Block Ciphers

- AES (128-bits key length)
- 1. S-Box implemented using composite field (enc./dec.)
- 2. S-Box implemented using case statement (enc.)
- 3. S-Box implemented using AND-XOR (1-Stage) (enc.)
- 4. S-Box implemented using AND-XOR (3-Stage) (enc.)
- 5. CTR mode supported Pipelined
- 6. For DPA countermeasure (Masked AND, MDPL, Threshold Implementation, WDDL, Pseudo RSL)
- DES (enc./dec.)
- *MISTY1* (enc./dec.)
- Camellia (128-bits key length, enc./dec.)
- SEED (enc./dec.)
- CAST128 (enc./dec.)

> AES Composite Field Implementation

Power Analysis of Block Ciphers

- \checkmark

✓ Differential Power Analysis (DPA):

- Much more powerful attack than SPA
- More difficult to prevent

Attack Method	Description	Attacked Segment
DPA	Analyzes correlation between set of power traces and a particular intermediate 1-bit value corresponding to the guessed partial key	10 th round
M-DPA	Examines the correlation between power traces and the Hamming weight of a particular intermediate multi-bit value corresponding to a guessed partial key	10 th round
B-DPA	Versatile attack that combines the DPA results for each bit of a particular intermediate multi-bit value corresponding to a guessed partial key	10 th round
CPA	Analyzes a correlation between power traces and the Hamming distances of the transitioning of a register that stores a particular intermediate value corresponding to a guessed partial key	Data output
PPA	Extend of CPA with weighing to the Hamming distances	Data output
M2-DPA	Analyzes a correlation between two certain segments in the power traces	10 th round
W2-DPA	Computes the difference of the means of power trace squares	10 th round

References

[1]	P. Kocher, J. J
[2]	J. Kesley, B. S Product Ciphe
[3]	ISO/IEC 1803 Encryption Alg
[4] Busin	S. Mangard, E ess Media, LLC
[5]	"Side-channel http://www.rcis
[6]	"Cryptographic University. http
[7]	"Power Analys

The voltage difference across the shunt resistor (in series with power input) divided by the resistance, is the circuit's power consumption.

Simple Power Analysis (SPA):

- Directly interpreting power consumption measurements - Can yield information about device's operation and key info. - Easy to prevent (avoid key conditional branching)

- Statistical analysis and error correction techniques to extract information correlated to secret keys.

- Two phases – Data Collection and Data Analysis

Attack Methods Against AES Circuits

Jaffe and B. Jun: "Differential power analysis", CRYPTO 1999. Schneier, D. Wagner, and C. Hall, "Side Channel Cryptanalysis of ers".

33-3:2005, "Information technology – Security techniques – gorithms – Part3: Block ciphers".

E. Oswald and T. Popp, "Power Analysis Attacks", Springer C, 2007

Science

Attack Standard Evaluation Board (SASEBO)," RCIS, AIST s.aist.go.jp/special/SASEBO/index-en.html

ic Hardware Project", Computer Structures Laboratory, Tohoku p://www.aoki.ecei.tohoku.ac.jp/crypto/

sis Attacks on SASEBO", RCIS, AIST, January 2010